Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Activity-based directed evolution of a membrane editor in mammalian cells.

blue CRY2/CIB1 HEK293T
Nat Chem, 22 May 2023 DOI: 10.1038/s41557-023-01214-0 Link to full text
Abstract: Cellular membranes contain numerous lipid species, and efforts to understand the biological functions of individual lipids have been stymied by a lack of approaches for controlled modulation of membrane composition in situ. Here we present a strategy for editing phospholipids, the most abundant lipids in biological membranes. Our membrane editor is based on a bacterial phospholipase D (PLD), which exchanges phospholipid head groups through hydrolysis or transphosphatidylation of phosphatidylcholine with water or exogenous alcohols. Exploiting activity-dependent directed enzyme evolution in mammalian cells, we have developed and structurally characterized a family of 'superPLDs' with up to a 100-fold enhancement in intracellular activity. We demonstrate the utility of superPLDs for both optogenetics-enabled editing of phospholipids within specific organelle membranes in live cells and biocatalytic synthesis of natural and unnatural designer phospholipids in vitro. Beyond the superPLDs, activity-based directed enzyme evolution in mammalian cells is a generalizable approach to engineer additional chemoenzymatic biomolecule editors.
2.

Activity-based directed evolution of a membrane editor in mammalian cells.

blue CRY2/CIB1 HEK293T Signaling cascade control
bioRxiv, 26 Sep 2022 DOI: 10.1101/2022.09.26.509516 Link to full text
Abstract: Cellular membranes contain numerous lipid species, and efforts to understand the biological functions of individual lipids have been stymied by a lack of approaches for controlled modulation of membrane composition in situ. Here, we present a strategy for editing phospholipids, the most abundant lipids in biological membranes. Our membrane editor is based upon a bacterial phospholipase D (PLD), which exchanges phospholipid head groups through hydrolysis or transphosphatidylation of phosphatidylcholine with water or exogenous alcohols. Exploiting activity-dependent directed enzyme evolution in mammalian cells, we developed and structurally characterized a family of “superPLDs” with up to 100-fold higher activity than wildtype PLD. We demonstrated the utility of superPLDs for both optogenetics-enabled editing of phospholipids within specific organelle membranes in live cells and biocatalytic synthesis of natural and unnatural designer phospholipids in vitro. Beyond the superPLDs, activity-based directed enzyme evolution in mammalian cells is a generalizable approach to engineer additional chemoenzymatic biomolecule editors.
Submit a new publication to our database